
Simone Licciardi
Politecnico di Milano, Milan, IT

simone.licciardi@outlook.com
+39 342 020 9779

Adaptive Learning Rates via Continuous-Time minmax Optimization Model

Introduction

Recently, minmax optimization problems [1] have at-
tracted significant interest from fields such as ML [2,
3], Control Theory [4], Network Design [5, 6] and
Game Theory as a universal model for adversarial
zero-sum games. To solve them, the most common
algorithms are Gradient Descent Ascent (GDA) and
its variants [1, 7]. These algorithms can be unstable
due to the numerical problem’s stiffness, termed time-
scale separation [8] in optimization: when one direc-
tional update dominates the other. Some heuristic
solutions have been designed, with the most advanced
being NeAda [8] and TiAda [9].

Simultaneously, recent works on continuous-time
modeling of Gradient Descent (GD) have shifted away
from theory over the Negative Gradient Flow and to-
wards better models for the discrete-step dynamics
of GD [10, 11, 12]. This effort explained empirical
observations (e.g. Implicit Regularization [11], Edge-
of-Stability behavior [13]), produced practical results
(adaptive learning rate schedules based on Quasi-
Newton approximations of the Hessian), and models
such as the Principal Flow (PF) [14]. While works
on continuous flow for minmax optimization deliv-
ered promising results through regularization [15], the
development of techniques to mitigate the time-scale
separation remains little investigated.

Objectives

The primary goal of this proposal is to study the sep-
aration of time-scales by using continuous-time flows,
and determine theory-driven adaptive learning rates
for GDA as a consequence. To achieve this, we want
to 1. adapt continuous-time models (such as PF) to
minmax problems, 2. utilize these models to investi-
gate the cross-influence between the primal and dual
variables, 3. build on this to make the time-scale con-
stant [8] explicit as a dynamical quantity of the model.
As a downstream task, 4. create a computationally
tractable schedule for adaptive learning rates that.

The main challenge will be to account simulta-
neously for the mitigation of the Edge-of-Stability
behavior (Requirement A), which motivates the PF

model, and the time-scale concerns (Requirement B),
which motivates this analysis. Specifically, B enforces
a constraint on the ratio of learning rates for the pri-

mal and dual variables, preventing us from choosing
learning rates independently for each direction.

Methodology

The first approach is to build on [12, 15]. We use
Backward Error Analysis [16] to find a continuous
flow model, then find a surrogate for the time-scale
constant L2 from [8] through the hessian of the ob-
jective function, and finally make it explicit through
the dynamical model. To construct the learning rate
schedules, we start with the optimal ones deduced
from PF in [14] to ensure (A) and then rescale them to
fit the time-scale from the dynamical, as to guarantee
(B). This can be made tractable with Quasi-Newton
approximations of the Hessian, like in [14].

The alternative approach, suggested by the man-
agement of stiffness in numerical analysis, is to con-
sider a different GDA model: the vanilla (minmax) Im-
plicit Gradient Flow (IGF) [11], with added stochastic
noise. We would then model this in continuous time
through Stochastic DEs. This is a viable approach:
noise allows us to adapt GDA timesteps until they fit
the time-scale constant, satisfying (B), and yet es-
cape local minima through stochastic noise, resolving
IGF being attracted to them [12].

Relevance

Stable minmax algorithms are essential. Thus, here
are some of the most relevant applications of improved
optimization schedules: 1. to stabilize GANs train-
ing and avoid mode collapse, 2. to produce effec-
tive adversarial training defense [17, 18], where SOTA
(termed FAT) relies on GDA. Better adversarial defence
ensures deep learning reliability for critical applica-
tions such as energy and infrastructure. 3. to im-
plement robust decision-making in an embedded and
dynamical setting.
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